X-Ray Examination of the Structure of Poly(diffuorophosphazene)

By H. R. Allcock,* G. F. KONOPSKI, R. L. KUGEL, and E. G. STROH

(Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802)

Summary X-Ray diffraction photographs of oriented poly(difluorophosphazene) fibres reveal the existence of two molecular conformers, one of which occupies a cistrans-planar conformation: ¹⁹F n.m.r. results and elasticity data indicate an unusually high chain flexibility.

WE report the results of an X-ray diffraction examination of high molecular weight poly(difluorophosphazene), (I), also known as poly(difluorophosphonitrile). X-Ray dif-

fraction patterns of oriented fibres of poly(dichlorophosphazene), $(NPCl_2)_n$, have been studied in some detail,¹⁻⁵ and a repeating distance of 4.92 Å along the chain axis has been calculated from the relatively sharp fibre axis reflections. Giglio, Pompa, and Ripamonti⁸ used these data to suggest an approximately cis-trans-planar chain conformation, and a recent i.r. study⁶ has provided some confirmation for this interpretation. X-Ray repeating distances of radiation-produced poly(dibromophosphazene), (NPBr₂)_n, apparently show sharp Debye-Scherrer-type rings with spacings which correspond closely to those of the chloropolymer.⁴ Thermally-produced poly(dibromophosphazene) was reported to be amorphous.⁴ No previous attempts to examine the structure of $(NPF_2)_n$ have been reported.

We have prepared high molecular weight $(NPF_2)_n$ by the high pressure, high temperature polymerization of the cyclic trimer, $(NPF_2)_3$, using a modification of the method reported by Seel and Langer.⁷ The polymer is a transparent, hydrolytically-unstable elastomer which can be crystallized and oriented by the stretching of fibres. Analytical and i.r. data were consistent with structure (I). Low temperature X-ray fibre photographs obtained with a cylindrical camera using $Cu-K_{\alpha}$ radiation revealed two different diffraction patterns, one at temperatures between 25 and -36° (conformer A), and the second in the region of -56° (conformer B). Both showed well-resolved zero, first, and second layer line reflections.

The layer line spacings for conformer A indicated a fibre axis repeating distance of 6.49 ± 0.05 Å. A weak meridional reflection on the hk2 layer line (d = 3.20 Å) underwent a marked sharpening and intensification when the fibre axis was inclined by 15° or when the fibre was oscillated normal to the c axis. The unit cell was provisionally assigned to the tetragonal class with a = b = 8.05 Å, although several orthorhombic cells could also be justified. A number of possible chain arrangements, including helical structures, are currently being considered for this conformer.

Conformer B provided more detailed photographs, which showed 11 hk0, 4 hk1, and 3 hk2 reflections. The fibre repeat distance is 4.86 ± 0.10 Å, which corresponds closely to the value of 4.92 Å reported for poly(dichlorophosphazene).^{1,3,5} All the reflections for conformer B were indexed by reciprocal lattice methods for an orthorhombic cell of dimensions a = 8.69, b = 5.38, c = 4.86 Å, with *hkl*; h + k = 2n: hk0; h + k = 2n: 0kl; k = 2n: 00l; l = 2n. The space group was assigned to $Cmc2_1$. A D_m of 1.84 (by flotation techniques at 25°) is undoubtedly too low to correspond to the crystalline regions of the polymer. If 4 monomer units are assumed to occupy the cell, the D_c of $2 \cdot 25 - 2 \cdot 42$ corresponds closely to the known density of $2 \cdot 2$ for crystalline $(NPF_2)_{8}$.⁸ Furthermore, by the use of the structural parameters, $\angle P-N-P = 137$, $\angle N-P-N = 120$, $\angle F-P-F = 99.9^{\circ}$, P-N = 1.51, and P-F = 1.52 Å, obtained from crystal-structure work on the trimer and tetramer,^{8,9} two cis-trans-planar chains (II), each with two monomer units per repeat, can be shown to occupy the *c*-centred cell. Fourier calculations based on this structure show good agreement with the observed intensities.

It is interesting to note that $(NPF_2)_n$ is elastomeric down to temperatures of -80° to -95° [compared with -63° for $(\text{NPCl}_2)_n^{10}$ and -15° for $(\text{NPBr}_2)_n^{5}$], and that the ¹⁹F n.m.r. spectrum of the unstretched solid remains a sharp doublet at least down to -70° . These facts indicate considerable backbone torsional mobility in this molecule and we believe that this is consistent with the low intramolecular interactions calculated for $(NPF_2)_n$.¹¹

We thank the U.S. Army Research Office, Durham, for the support of this work.

(Received, June 29th, 1970; Com. 1025.)

- ¹ K. H. Meyer, W. Lotmar, and G. W. Pankow, Helv. Chim. Acta, 1936, 18, 930.
- ² M. L. Huggins, J. Chem. Phys., 1945, 13, 37.

- ⁵ E. Giglio, F. Pompa, and A. Ripamonti, J. Polymer Sci., 1962, 59, 293.
 ⁴ D. Cordischi, A. D. Site, A. Mele, and P. Porta, J. Macromol. Chem., 1966, 1, 219.
 ⁵ H. R. Allcock, G. F. Konopski, R. L. Kugel, and E. G. Stroh, unpublished work.
- ⁶ T. R. Manley and D. A. Williams, Polymer, 1969, 10, 307.

- ¹ F. Seel and J. Langer, Z. anorg. Chem., 1958, 295, 317.
 ⁸ M. W. Dougill, J. Chem. Soc., 1963, 3211.
 ⁹ H. McD. McGeachin and F. R. Tromans, J. Chem. Soc., 1961, 4777.
 ¹⁰ H. R. Allcock, R. L. Kugel, and K. J. Valan, Inorg. Chem., 1966, 5, 1709.
 ¹¹ H. R. Allcock, J. E. Lehnsen, and J. J. Meister, unpublished work.